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We study how weak disorder a®ectsthe growth of the Fib onacci series. We intro duce a family
of stochastic sequencesthat grow by the normal Fib onacci recursion with probabilit y 1 ¡ ², but
follow a di®erent recursion rule with a small probabilit y ². We focus on the weak disorder limit
and obtain the Lyapunov exponent, that characterizes the typical growth of the sequenceelements,
using perturbation theory. The limiting distribution for the ratio of consecutive sequenceelements is
obtained as well. A number of variations to the basic Fib onacci recursion including shift, doubling,
and copying are considered.
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The Fibonacci integer sequencef 1; 1; 2; 3; 5; 8; : : :g has
beenstudied extensively in number theory, applied math-
ematics, physics, computer science,and biology [1, 2].
Fibonacci numbers are ubiquitous in nature: they gov-
ern branching in trees, spiral patterns in shells, and the
arrangement of seedsin sun°owers [3{6].

The Fibonacci sequence,de¯ned via the recursion re-
lation

Fn +1 = Fn + Fn ¡ 1 (1)

with F0 = 0 and F1 = 1, is deterministic. However, many
patterns in nature are not perfect. For example, spiral
patterns in sun°owers, whereFibonaccinumbers as high
as144are observed, may very well bedisordered. An em-
pirical study of sun°owers observesthe normal sequence
f 1; 1; 2; 3; 5; : : :g with a frequencyof 95%, but altered se-
quencessuch as f 2; 3; 5; 7; : : :g and f 1; 3; 4; : : :g are also
observed with a small frequency [4].

Motiv ated by this empirical observation, we study dis-
order in Fibonacci sequences.Speci¯cally, we intro duce
the following stochastic sequence. We assumethat the
normal Fibonacci rule (1) is followed most of the time,
but that with a small probabilit y, ² ¿ 1, an \erroneous"
recursion xn +1 = xn + xn ¡ 2, involving an index shift, is
followed. The stochastic recursion rule is therefore

xn +1 =

(
xn + xn ¡ 1 prob 1 ¡ ²;
xn + xn ¡ 2 prob ²:

(2)

The initial elements are always x0 = 0, and x1 = x2 = 1.
Let us ¯rst recall a few useful facts on the Fibonacci

sequence,corresponding to the limiting case² = 0. The
serieselements are given by

Fn =
¸ n ¡ (¡ ¸ )¡ n

¸ + ¸ ¡ 1 (3)
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with the golden ratio ¸ = 1+
p

5
2 . The series elements

grow exponentially with n, Fn » ¸ n . Substituting this
form into the recursion (1), the golden ratio satis¯es
¸ 2 = ¸ + 1, and this allows to express polynomials of
arbitrary degree in ¸ as linear functions of ¸ . More-
over, the ratio between two successive series elements,
r n = xn =xn ¡ 1, approaches the golden ratio r n ! ¸ , as
n ! 1 .

Our goal is to elucidate the typical growth of the se-
quenceelements

xn » e¯ n (4)

with ¯ ´ ¯ (²) the Lyapunov exponent. For example, for
the random Fibonacci seriesxn = xn ¡ 1 § xn ¡ 2 where
addition and subtraction are chosen with equal proba-
bilities, the Lyapunov exponent is ¯ ¼ 0:123975[7{11].
In our case, however, the recursion rules (2) represent
a gentle departure from the original Fibonacci rule (1)
and thus, we expect a small changein the Lyapunov ex-
ponent. We focus on the weak disorder limit, ² ! 0,
and useperturbation theory to show that the Lyapunov
exponent varies linearly with the disorder strength

¯ (²) = ¯ 0 + ¯ 1² + ¢¢¢ (5)

with ¯ 0 = ln ¸ .
In general, the averagebehavior hxn i can be obtained

analytically. From the sequencede¯nition (2), the aver-
agesatis¯es the recursion relation

hxn +1 i = hxn i + (1 ¡ ²)hxn ¡ 1i + ²hxn ¡ 2i (6)

with hx0i = 0, and hx1i = hx2i = 1. This linear rela-
tion implies the exponential growth hxn i » ¹ n with the
growth factor ¹ being the largest root of the third order
polynomial

¹ 3 = ¹ 2 + (1 ¡ ²)¹ + ²: (7)

Di®erentiating this equation with respect to ² and setting
² = 0, we ¯nd d¹=d²

¯
¯
² =0 , and thus, for small ² we have
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¹ (²) = ¸ ¡ ¸ ¡ 1
¸ +2 ². To compare with the growth of the

typical sequence(4), it is useful to write hxn i » e° n with
° = ln ¹ . To ¯rst order in the disorder strength ²,

° (²) = ° 0 + ° 1² + ¢¢¢ (8)

with ° 0 = ¯ 0 and ° 1 = 1¡ ¸
¸ ( ¸ +2) .

To addressthe typical behavior, we intro duce the ra-
tio between two successive elements in the sequence,
r n = xn =xn ¡ 1. The random recursion rule (2) implies
that this ratio satis¯es the random map,

r n +1 =

(
1 + 1

r n
prob 1 ¡ ²;

1 + 1
r n

¢ 1
r n ¡ 1

prob ²:
(9)

When there is no disorder, ² = 0, the ratio approaches
the goldennumber, r n ! ¸ asn ! 1 . Thus asthe num-
ber of iterations of the normal map (9) grows inde¯nitely ,
the distribution of the ratio approachesa delta function
centered at the golden ratio, P(r ) ! ±(r ¡ ¸ ).

Generally, when ² > 0, the distribution P(r ) has a
richer structure, as shown below. The Lyapunov expo-
nent can be conveniently expressedin terms of P(r ). In-
deed,each sequenceelement is given by the product

xn =
nY

j =2

r j : (10)

With the exponential growth (4), the Lyapunov exponent
simply equalsthe expected value of the logarithm of the
ratio,

¯ = hln r i =
Z

dr P(r ) ln r: (11)

At weak disorder, with a small probabilit y ², an er-
ror occurs. That is, the map r n +1 = 1 + 1=(r n r n ¡ 1) is
implemented. As long as no errors occur, the ratio will
essentially be equal to ¸ . Then, when an error occurs,
the ratio reducesto 1 + ¸ ¡ 2. Since the expected num-
ber of iterations beforeanother error occurs, ² ¡ 1, is very
large, the ratio again quickly approaches ¸ . This cycle
continuesad-in¯nitum.

To characterizethis process,weshouldunderstandhow
an error evolves under the random map (9). Thus, we
consider the following scenario: (1) Initially , the ratio
equals the golden number ½0 = ¸ , (2) An error occurs
at the very ¯rst step, and (3) no further errors occur.
Let ½n be the value of the ratio after n iterations. Then
½1 = 1 + ¸ ¡ 2, and using the relation ¸ 2 = ¸ + 1 we have
½1 = 2+ ¸

1+ ¸ . At further iterations, the ratio follows the
normal map ½n +1 = 1 + 1=½n and therefore,

½1 =
2 + ¸
1 + ¸

; ½2 =
3 + 2¸
2 + ¿

; ½3 =
5 + 3¸
3 + 2¸

:

By induction, at the nth iteration, the ratio can be ex-
pressedin terms of the Fibonacci numbers

½n =
Fn +2 + Fn +1 ¸
Fn +1 + Fn ¸

: (12)

This seriesalternatesaround ¸ : ½2n +1 < ¸ while ½2n > ¸ ,
but both the odd and the evensub-seriesquickly converge
to golden ratio, ½n ! ¸ as n ! 1 .

This analysis characterizes how a single error a®ects
the ratio. To ¯rst order in the disorder strength ²,
the probabilit y that the value ½n is observed equals
²(1 ¡ ²)n ¡ 1, re°ecting the probabilit y that one error is
madeand then, no errors are made in the following n ¡ 1
iterations. Our ¯rst result is the distribution P(r ) for
the ratio to have the value r

P(r ) ! ²
1X

n =1

(1 ¡ ²)n ¡ 1±(r ¡ ½n ) ; (13)

in the weak disorder limit ² ! 0.
The calculation of the ¯rst order correction to the Lya-

punov exponent (5) is now straightforward. Substituting
the leading behavior in the weak disorder limit (13) into
the general formula (11) for the Lyapunov exponent we
obtain

¸ ! ²
X

n =1

(1 ¡ ²)n ¡ 1 ln ½n : (14)

The sum is evaluated as follows

¸ ! ²
1X

n =1

(1 ¡ ²)n ¡ 1 ln ¸ + ²
1X

n =1

(1 ¡ ²)n ¡ 1 ln
½n

¸
:

Performing the summation in the ¯rst term, we verify
that ¯ 0 = ln ¸ . Keeping only the terms proportional to
² in the secondsum gives the leading correction in the
perturbation expansionof the Lyapunov exponent (5),

¯ 1 =
1X

n =1

ln
½n

¸
: (15)

To perform this summation, we substitute the expression
(12), and replace the upper limit with a large but ¯nite
cuto® N , and then evaluate the N ! 1 limit as follows

¯ 1 = lim
N !1

ln
1

¸ N

FN +2 + FN +1 ¸
1 + ¸

= ln
2¸ 2

(¸ + 1)(¸ + ¸ ¡ 1)

where in the second line we used Eq. (3). Using the
equality ¸ 2 = ¸ + 1, we arrive at our secondmain result

¯ 1 = ln
2¸

¸ + 2
: (16)

This correction is very close, but not identical, to that
corresponding to the average behavior (8). As the dif-
ference¯ 1 ¡ ° 1 ¼ ¡ 0:00599897is negative, the typical
growth is slower than the average growth. This mani-
fests the multiscaling behavior that has beenreported in
other stochastic sequences[12]. Generally, there is a mul-
tiscaling spectrum ³m that characterizes the growth of
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FIG. 1: The weak disorder limit. Shown is the Lyapunov ex-
ponent ¯ , versus the disorder strength ². Also shown for ref-
erenceare the parameter ° characterizing the averagegrowth
and the perturbation theory result (5) with (16).

the mth moments, hxm
n i 1=m » exp(n³ m ). However, there

is no obvious relation betweenthe Lyapunov exponent ¯
and the multiscaling spectrum ³m , e.g., ¯ 6= ° ´ ³1.

We performed Monte Carlo simulations to verify these
theoretical predictions. In the simulations, we followed
the stochastic evolution of the variable r . This approach
is advantageous for computation becausethe ratios are
bounded, in contrast with the explosive growth in the se-
quenceelements. The results presented here correspond
to a single Monte Carlo run with 109 iterations.

There is a distinct but subtle di®erencebetween the
typical and the averagegrowth ascharacterizedby ¯ and
° , respectively (Fig. 1). The two coincide in the limit-
ing cases² = 0 and ² = 1 [13], and the discrepancy is
maximal, a mere 0:2%, at the midpoint ² = 1=2.

The numerical simulations show unambiguously that
as the number of iterations grows inde¯nitely , the ra-
tio distribution approaches a stationary distribution
P(r ). On Fig. 2, we display the cumulativ e distribution
G(r ) =

Rr
0 dr0P(r 0).

The stationary distribution has a compact support,
rmin < r < r max . Indeed, the de¯nition of the map (9)
implies the obvious bounds r min > 1 and r max < 2. The
valuesr min = (1+

p
3)=2 and r max =

p
3, consistent with

the numerical simulations results, are obtained from the
following relations

rmax = 1 +
1

rmin
(17a)

rmin = 1 +
1

1 + r max
: (17b)

The ¯rst relation (17a) follows from the normal Fibonacci
recurrencer n +1 = 1 + 1=rn . The secondrelation (17b)
follows from the altered recurrencer n +1 = 1+ 1=(r n r n ¡ 1)
combined with max(r n r n ¡ 1) = 1+ max(r n ¡ 1) = 1+ r max ,
that follows from the normal recursionr n +1 = 1+ 1=rn ¡ 1.

The distribution P(r ) consists of a set of delta func-
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FIG. 2: The cumulativ e distribution G(r ) versus the ratio r .

tions, and therefore, the cumulativ e distribution G(r )
has a devil's staircase structure with in¯nitely many
gaps. Generally, there is a large gap in the interval
1=2 < r < 1 + 1=

p
3. This gap arises since the map

(9) transforms (r min ; rmax ) into the union of two subin-
tervals, (r min ; 3=2) and (1+ 1=rmax ; rmax ). The bounding
point 3=2 is obtained using reasoningsimilar to that used
in the previous paragraph. Restricting the map to the
above subintervals one ¯nds that they are transformed
into the union of four smaller subintervals, etc. Hencethe
support of the invariant distribution P(r ) is a Cantor-lik e
fractal set and the cumulativ e distribution therefore has
a devil's staircasestructure with an uncountable number
of singularities (Fig. 2).

Thus far, we have addresseda speci¯c modi¯cation
of the Fibonacci recurrence, namely, the one involving
the index shift xn +1 = xn + xn ¡ 2. But there are of
courseseveral other, equally natural, modi¯cations of the
basic recursion rule. For example, one may simply copy
the last element xn +1 = xn or alternativ ely, double it
xn +1 = xn + xn . These two models are analyzed along
the samelines. For simplicit y, we addressthe latter case
where the recursion relation is

xn +1 =

(
xn + xn ¡ 1 prob 1 ¡ ²;
xn + xn prob ²;

(18)

with the initial elements x1 = x2 = 1. The corresponding
random map is

r n +1 =

(
1 + 1

r n
prob 1 ¡ ²;

2 prob ²:
(19)

In contrast with (9), when an error occurs, the ratio
r = 2 is independent of the previous element. Thus, er-
ror events e®ectively reset the processanew. As a result,
this stochastic processis analytically tractable.

To characterizehow an error propagates,we start with
½1 = 2 and use the recursion ½n +1 = 1 + 1=½n to obtain
the ¯rst few terms ½2 = 3=2, ½3 = 5=3, and ½4 = 8=5. In
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general,

½n =
Fn +2

Fn +1
: (20)

The ratio attains this value, r = ½n , when an error is
followed by n ¡ 1 normal recursion steps, and this oc-
curs with probabilit y ²(1 ¡ ²)n ¡ 1. Thus, the probabilit y
distribution of the ratio is

P(r ) = ²
1X

n =1

(1 ¡ ²)n ¡ 1±(r ¡ ½n ) (21)

with ½n given by (20). In contrast with the limiting dis-
tribution (13), this result is now exact, becausethe his-
tory prior to the most recent error event is irrelevant.
The distribution now has a countable set of singularities
located at the ratios ½n of successive Fibonaccinumbers.
Thesesingularities \bunch" near the golden ratio ¸ .

Substituting the probabilit y distribution (21) into the
Lyapunov formula (11) yields

¯ = ²
1X

n =1

(1 ¡ ²)n ¡ 1 ln
Fn +2

Fn +1
: (22)

Again, the typical growth is slower than the aver-
age growth, as for example, ¯ (1=2) ¼ 0:571357 while
° (1=2) ¼ 0:577049[14]. The exact expression(22) can
be, in principle, expandedas a power seriesin the disor-
der strength ², viz. ¯ =

P
n ¸ 0 ¯ n ²n with ¯ n characteriz-

ing the e®ectof n errors. Of course,¯ 0 = ln ¸ . The low-
est order correction, which can be obtained either from
Eq. (22) or from Eq. (15), is given by

¯ 1 = ln
2¸ + 1
¸ + 2

: (23)

One can also extract the next correction from Eq. (22);
the result is ¯ 2 =

P
m ¸ 0 ln

£
1 + (¡ 1)m ¸ ¡ 2m ¡ 6

¤
.

In summary, we intro duced a class of random Fi-
bonaccisequenceswherewith a ¯xed probabilit y the clas-
sic rule is followed, but otherwise, an alternate recursion
occurs. We analyzed the weak disorder limit and ob-
tained the limiting distribution for the ratio of consec-
utiv e sequenceelements as well as the Lyapunov expo-
nent. We found that the typical growth is slower than
the averagegrowth. We alsoshowed that the cumulativ e
distribution of the ratio of consecutive elements has a
devil's staircasestructure. An exact solution for particu-
larly simple alterations of the recursionrule wasobtained
as well.

The above results raise a number of questions: Can
the ratio distribution and the Lyapunov exponent be ob-
tained analytically in general?What are the locations of
the singularities underlying the distribution of the ratio?
What is the probabilit y that a given integer belongsto
the random Fibonacci sequence?

We have focused on the average and the typical se-
quence growth, but further information is encoded in
°uctuations with respect to the typical behavior. Related
studies on disordered systemssuggestthat such °uctu-
ations should obey Gaussianstatistics [15] and our pre-
liminary numerical simulations support this. The corre-
sponding variance may be calculated using perturbation
theory in the weak disorder limit.
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